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ABSTRACT
The Tucuman Parrot (Amazona tucumana), which is restricted to Southern Yungas forest of Argentina and Bolivia, has
not recovered from severe population declines in the 1980s. We assessed habitat conservation targets for this species
and asked, ‘‘What constitutes the right target?’’ For species with small ranges, maximizing the proportion of the range
under protection is an established strategy to safeguard against threats. However, designating an amount for
protection based on range alone (i.e. a ‘representation target’) may set a misguided conservation target if critical
resources are not considered. We used an ensemble model (‘biomod2’) to map suitable breeding and nonbreeding
habitat of the Tucuman Parrot based on environmental variables and key resources (breeding) or the species’
occurrence (nonbreeding). Pino blanco (Podocarpus parlatorei) seeds are critical food for Tucuman Parrot nestlings, so
we modeled the distribution of this tree as a proxy for potential breeding habitat. We then examined the adequacy of
current habitat protection relative to representation targets and in light of known threats, including forest degradation
and loss, and poaching. Overall, 17% of the 110,122 km2 Southern Yungas is protected, which is close to the
proportion recommended (the target; 22%), based on the ecoregion’s size, for inclusion in a conservation network.
Similarly, 26% of the 46,263 km2 of nonbreeding habitat is protected, also relatively successful at 71% of the target
(36%). However, of the scant ~21,000 km2 of breeding habitat, only 15% is protected, much less than the
representation target (49%) recommended for maximizing the probability of population persistence. Poaching of
nestlings further undermines the value of some nesting habitat in Bolivia. For Tucuman Parrots, increased enforcement
of protection in Bolivia and protection of additional nesting habitat in Argentina are the most efficient ways to
enhance persistence. Our results illustrate how habitat conservation targets based on area alone may be inadequate if
important biological information is overlooked.

Keywords: Argentina, Bolivia, ensemble species distribution modeling, Podocarpus parlatorei, protected areas,
Yungas

La representación de objetivos basados en área, ¿protegen los recursos crı́ticos para la conservación del
Loro Alisero?

RESUMEN
El Amazona tucumana es una especie restringida a las Yungas australes de Argentina y Bolivia que no se ha recuperado
de la severa declinación de sus poblaciones durante la década de los 80s. Evaluamos los objetivos de conservación del
hábitat del Amazona tucumana y nos preguntamos, ¿cual constituye el objetivo adecuado? Maximizar la proporción
del área bajo protección de especies con rangos pequeños es una estrategia común para resguardarlas de eventos
estocásticos y de otras amenazas. Sin embargo, basar la designación de la cantidad de área a proteger sólo en su
rango (es decir, en un objetivo de representación) puede ser un objetivo de conservación erróneo si no se consideran
los recursos crı́ticos para la especie. En este trabajo utilizamos un modelo conjunto (‘biomod2’) para mapear el hábitat
reproductivo y no reproductivo adecuado para el Amazona tucumana basado en variables ambientales y recursos
clave (durante la época reproductiva) o en la ocurrencia de la especie (en la época no reproductiva). Las semillas de
Podocarpus parlatorei constituyen un alimento crı́tico para los pichones de Amazona tucumana, por lo que modelamos
la distribución de esta especie de árbol como una representación del hábitat reproductivo potencial. Luego
examinamos si es adecuada la protección actual de su hábitat en relación a objetivos de representación y a la luz de las
amenazas conocidas, incluyendo la degradación y pérdida de bosque y la extracción de pichones. En total, el 17% de
los 110,122 km2 de Yungas australes están protegidos, lo cual está cerca de la proporción recomendada (22%) para ser
incluido en un sistema de áreas de conservación, basado en el tamaño de la ecorregión. De igual manera, el 26% de los
46,263 km2 de hábitat no reproductivo está protegido, siendo relativamente exitoso al alcanzar el 71% del objetivo de
conservación (36%). Sin embargo, de los escasos ~21,000 km2 de hábitat reproductivo, solamente el 15% está
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protegido, mucho menos que el objetivo de representación (49%) recomendable para una probabilidad máxima de
persistencia de la población. La extracción de pichones además, disminuye el valor de algunos hábitats de nidificación
de la especie en Bolivia. Para el Amazona tucumana, un mayor cumplimiento de su protección en Bolivia y la
protección de hábitat de nidificación adicional en Argentina serı́a la forma más eficiente de mejorar sus posibilidades
de persistencia. Nuestros resultados muestran como los objetivos de conservación de hábitat basados solamente en
área pueden ser inadecuados si la información biológica importante es soslayada.

Palabras clave: Argentina, Bolivia, modelado conjunto de distribución de especies, Podocarpus parlatorei, áreas
protegidas, Yungas

INTRODUCTION

The Southern Yungas ecoregion is located on the eastern

slopes of the Andes, extending from southeastern Bolivia

to northwestern Argentina (Fjeldså and Krabbe 1990). The

endemic Tucuman Parrot (or Tucumán Parrot; Amazona

tucumana) occurs only in Southern Yungas forest, and

suffered a severe population decline in the 1980s from

which it has not recovered due to capture for the pet trade

(Rivera et al. 2010), forest degradation, logging of pino

blanco (Podocarpus parlatorei; Politi et al. 2009), a key

food resource for nestlings (Rivera 2011), and range

contraction in at least the southern-most extent (Rivera

et al. 2007, 2010, 2013). The species is categorized as

‘Vulnerable’ by the International Union for the Conserva-

tion of Nature (IUCN 2014). In both Bolivia and

Argentina, conservation of the Tucuman Parrot centers

on protected areas, which have been established at

different administrative levels (e.g., federal, provincial,

and municipal) and vary in the degree to which they

restrict human activities. Stricter protection is accompa-

nied by a lower threshold for activities that degrade habitat

(Ferraro et al. 2013).

Effective protected areas include habitat that is required

by species of conservation concern and that is free from

conditions and activities that threaten those species’

persistence (Margules and Pressey 2000). In analyzing

the effectiveness of a regional protected area network, the

representation of specific habitat or ecosystem types within

the network is a frequently used criterion (e.g., Long et al.

1996, Rodrigues et al. 2004, Svancara et al. 2005, Tear et al.

2005, Maria Mendoza and Arita 2014). The concept of

representation includes consideration of the degree to

which protected areas reflect the natural variety of habitats

of a region (Margules et al. 2002). One conservation target

that is both intuitive and easy to monitor is protection of a

fixed percentage of each habitat type.

Targets for the amount of habitat that needs to be

protected to safeguard an individual species must be

tailored according to the species’ range size (Rodrigues et

al. 2004, Tear et al. 2005). While 10% is considered a

sufficient conservation representation target for widely

distributed species or habitats (Brooks et al. 2004), an

adequate target for a species with very limited distribution

is considerably higher (Kukkala and Moilanen 2012).

Species with small ranges are a priori of conservation

concern (Rosenfield 2002) because they are vulnerable to

stochastic threats such as extreme weather events,

epidemic diseases, novel predator invasions, and, if they

are dietary specialists, fluctuations in food availability.

Thus, a representation target of up to 100% may be

considered precautionary for species with ranges smaller

than 1,000 km2 (Rodrigues et al. 2004).

However, conservation targets that are based only on the

range of a given species do not necessarily capture the

finer-scale distribution of critical habitat elements within

the range (Margules et al. 2002). Species may depend on a

small portion of their range, or on a narrow set of features,

for certain important activities, such as mating, raising

young, migrating, and foraging. If this is the case, the

overall percentage of the range that is protected may have

limited relevance if critical sites or features are not

protected.

Two critical features of suitable Tucuman Parrot

breeding habitat are tree cavities for nesting and an

adequate population of mature pino blanco, an endemic

cloud forest coniferous tree species (Rivera et al. 2012).

Nestling and juvenile Tucuman Parrots feed so heavily on

pino blanco seeds that the trees may be essential for the

survival of juvenile parrots (Rivera 2011; Figure 1).

Tucuman Parrot nests are only found within 1 km of

mature pino blanco trees, which occur within cloud forest

(Politi et al. 2009). Years of high mast production coincide

with high Tucuman Parrot nest density (Rivera 2011).

Given the decline of the Tucuman Parrot population and

the specificity of its breeding habitat requirements, we

need to know whether protected areas include these

critical areas for breeding. An analysis of potential gaps in

protection across the whole of the ecoregion, and

specifically for breeding habitat, is a necessary step for

guiding conservation priorities (Jennings 2000, Kukkala

and Moilanen 2012).

While the protection of key features for all life stages is

essential to successful conservation outcomes, so too is

specifying legal activities within protected areas and

enforcing these laws. If a protected area is managed for

multiple goals, such as sustainable natural resource use as

well as biodiversity conservation, then the definition of
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‘sustainable’ must be carefully chosen to assure that

conservation goals can be met (Lunney et al. 1997). For

charismatic species such as parrots, the threat of poaching

for the pet trade is additive to the pressures of habitat loss

and degradation.

Legal export of Tucuman Parrots from Argentina and

Bolivia was high in the 1980s (Rivera et al. 2010), but

importation into the U.S. was banned in 1992 (U.S. Fish

and Wildlife Service 1992), and importation into the

European Union was banned in 2005 (http://www.

legislation.gov.uk/uksi/2005/1674/regulation/3/made). In

Bolivia, however, it is not uncommon to see Tucuman

Parrots kept as pets (L. Rivera personal observation, J.

Tella personal communication). Extraction continues for

local trade, with entire broods removed from nests in

Bolivia in protected and unprotected areas (Rivera et al.

2010).

Poaching rates are affected by the presence of protection

programs, by geographic region, and by domestic trade

within countries (Wright et al. 2001, Beissinger 2013).

Across the Neotropics, poaching is thought to be lower in

protected than unprotected sites (Wright et al. 2001).

While details of enforcement efforts within protected areas

of Bolivia and Argentina are unclear, in many developing

countries management and enforcement have not kept

pace with need (Bruner et al. 2004). For the Tucuman

Parrot specifically, the estimated shortfall in expenditure to

reduce the risk of extinction sufficiently to down-list it

from ‘Vulnerable’ to ‘Near Threatened’ in the next 10 years

is ~US$402,000 annually (McCarthy et al. 2012). Thus, the

degree to which Argentina’s and Bolivia’s protected areas

represent critical pino blanco forest habitat and provide

adequate protection for breeding Tucuman Parrots is not

clear.

Our goal was to compare conservation targets for

different components of habitat of the Tucuman Parrot

and the degree of success in achieving them. We also

evaluated the level to which pino blanco and mature

cavity-containing trees are secured by the protected areas

network. As part of that determination we sought to: (1)

map potential breeding and nonbreeding habitat for the

Tucuman Parrot; (2) assess the representation and

adequacy of currently protected areas for the Southern

Yungas ecoregion as a whole, and of both breeding and

nonbreeding habitat separately; and (3) make recommen-

dations for additional conservation actions.

METHODS

Study Area and Species
The Southern Yungas ecoregion is located on the eastern

slopes of the Andes between ~148S and 278S latitude

(Figure 2). This is the southern-most limit of Neotropical

montane forest (Hueck 1978). The SouthernYungas occurs

primarily within an elevational zone of 700–2,700 m

(Cabrera and Willink 1980). On the east it is bordered by

the Chaco ecoregion. In Bolivia, the Southern Yungas

extends from Santa Cruz Department through Chuquisaca

and Tarija departments to the Bolivian border with
Argentina to the south, covering an area ~530 km long

from north to south and 70 km wide (Rivera et al. 2010). In

Argentina, the Southern Yungas extends 700 km from the

Bolivian border south in an ~50-km wide swath that

includes portions of Salta, Jujuy, Tucumán, and Catamarca

provinces (Brown et al. 2009). The total extent of the

Southern Yungas is 110,122 km2.

The elevational gradient within the Southern Yungas has

fostered the development of 3 distinct habitat types, each

with unique climatic, phytogeographic, and hydrographic

characteristics: piedmont, montane, and cloud forest

(Cabrera 1976, Bobba and Hernández 2005). Piedmont,

at the lowest elevation (400–900 m), contains 113 tree

species, of which ~70% are semideciduous (Brown et al.

2001). Dominant tree species are Calycophyllum multi-

florum, Phyllostylon rhamnoides, Tabebuia avellanedae,

and Anadenanthera colubrina (Brown et al. 2001).

Piedmont experiences the greatest seasonal variation in

rainfall, with rains concentrated from November to March.

Annual mean rainfall is 800–1,000 mm, and annual mean

temperature is 18–208C (Mendoza 2005). Almost 90% of

piedmont forest has been converted to agriculture, and

many remnants are unsustainably harvested (Brown and

Malizia 2004). Montane forest (900–1,500 m elevation) has

similar tree species diversity (118 species). Dominant tree

species are Cinnamomum porphyria, Tipuana tipu,

Cedrela lilloi, and several species of Myrtaceae. Montane

forest has a mean annual rainfall of 1,200 mm and an

annual mean temperature of 10–188C (Mendoza 2005).

FIGURE 1. Tucuman Parrot (Amazona tucumana), ~1 week old.
Seeds of the conifer pino blanco (Podocarpus parlatorei) in the
nestling’s crop can be seen through the skin. This is the primary
food provided to nestlings by their parents during the first 6–7
weeks of life. Photo credit: L. Rivera
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Montane forest is under intensive logging pressure. The

practice of releasing free-ranging cattle to graze also is

common in montane forest. Cloud forest (1,500–2,700 m

elevation) has lower tree diversity (54 species) and is

dominated by Podocarpus parlatorei, Alnus acuminata,

Ilex argentina, Juglans australis, and Prunus tucumanensis.

Annual precipitation ranges between 600 and 1,200 mm;

annual mean temperature is 12–188C (Mendoza 2005).

Cloud forest habitat is generally the least degraded because

of its inaccessibility, but logging and periodic burning to

promote grasses both occur.

The Tucuman Parrot breeds in cloud forests of the

Southern Yungas but its geographic range is not fully

known, especially in Bolivia where minimal infrastructure

and steep topography in remote areas make access and

surveys difficult (Rivera et al. 2010). Reproduction by

Tucuman Parrots is thought to be limited by the

availability of suitable nest cavities and the presence of

mature (seed-producing) pino blanco trees in sufficient

abundance to ensure adequate food for nestlings and

juveniles (Rivera 2011, Rivera et al. 2012). These habitat

elements are not uniformly distributed in Southern

Yungas forest and are being affected by both long-term

climatic factors and recent anthropogenic stressors. Since

the Pleistocene epoch, pino blanco distribution appears

to have contracted westward and upward in elevation,

and to have become increasingly fragmented (Quiroga et

al. 2012). Pino blanco is currently listed as ‘Near

Threatened’ (IUCN 2014), and historic logging is thought

to have contributed to its past loss from an estimated 30%

of its former range (Quiroga and Gardner 2013). Slash-

and-burn agriculture also may have contributed to the

decline of this species in Bolivia (L. Rivera personal

observation). Pino blanco is also currently listed in

Appendix 1 of the Convention on International Trade

in Endangered Species of Wild Fauna and Flora (CITES

2015), which bans international trade but not domestic

logging.

During the nonbreeding season (May–September),

cloud forest offers virtually no food resources for Tucuman

Parrots (Rivera 2011). During this period Tucuman Parrots

primarily use lower-elevation piedmont forest, where

temperatures are more moderate than in cloud forest

(Mendoza 2005). Large flocks roost in piedmont and

forage primarily on leguminous seeds of Acacia visco and

Parapiptadenia excelsa (Rivera 2011).

FIGURE 2. Protected areas of the Southern Yungas, and locations of Tucuman Parrots and pino blanco. The Southern Yungas
ecoregion within (A) South America, and (B) in the context of other dominant land cover types that surround it in southern Bolivia
and northwestern Argentina. (C) Protected areas categorized by their management goals (Ia ¼ Strict Nature Reserve, II ¼ National
Park, IV¼Habitat or Species Management Area, VI¼ Protected Area with sustainable use of natural resources). (D) Occurrence data
for Tucuman Parrots and pino blanco used in habitat suitability models.
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Spatial Data
We modeled the current distribution of Tucuman Parrot

nonbreeding habitat and of pino blanco (as a surrogate for

breeding habitat) in Southern Yungas forest using a

combination of observational data, climatic variables, and

land-cover variables. We used a digital map of the limits of

the Southern Yungas from Lizárraga et al. (2012) to define

our study area. While a finer-scale delineation of the

Bolivian forest types exists (Ibisch and Mérida 2008), the

Lizárraga et al. (2012) map is based on consistent

methodology for defining forest types in both countries,

which was a requirement for our analysis. Data on

Tucuman Parrot distribution were obtained from 2003 to

2009 in Argentina and from 2006 to 2011 in Bolivia (Rivera

et al. 2007, 2010, 2012, Rivera 2011, Rojas Llanos 2012).

Nonbreeding season surveys were conducted using walk-

ing surveys or by driving slowly along secondary roads for

6–12 hr, partitioned among two 3-hr observation periods,

1 beginning at dawn and 1 ending at dusk. The surveys

were conducted at known historical locations of Tucuman

Parrots in Argentina (20 sites) and Bolivia (18 sites). We

included observations of parrots in the nonbreeding

season from 50 unique locations in our analysis, each no

closer than 1.7 km to adjacent locations. During the
nesting season (November–March), daily searches for

active nests were conducted and suitable cavities were

inspected. Data on the locations of mature pino blanco

stands were collected over the same period and were

supplemented with data from Quiroga et al. (2012) for a

total of 47 unique observations. Both datasets reflect the

latitudinal and longitudinal breadth of the species’ ranges

(Figure 2).

We obtained climatic variables representing current

conditions (1950–2000) mapped at 1 km resolution from

the WorldClim database (Hijmans et al. 2005). From the

total set of available bioclimatic variables (BIOCLIM), we

selected 8 variables to represent means, seasonality, and

extremes of climatic data, while minimizing strongly

correlated variables (Bateman et al. 2012). Our variable

set included annual precipitation (mm; BIO12) and annual

mean temperature (8C; BIO1), seasonality data for precip-

itation (CV; BIO15) and temperature (SD * 100; BIO4), and

extremes data for precipitation of the wettest quarter (mm;

BIO16), precipitation of the driest quarter (mm; BIO17),

maximum temperature of the warmest month (8C; BIO5),

and minimum temperature of the coldest month (8C;

BIO6). Some of these variables were strongly correlated

(e.g., temperature seasonality and precipitation seasonality;

Appendix Table 4), but we retained them in the model

because the nonparametric methods included in ‘biomod20

(see below) are not affected by collinearity (Elith et al.

2011), and because we were mainly concerned with the

final predicted suitability map rather than with identifica-

tion of the most important variables.

We obtained forest land-cover data from the Global

Land Cover 2000 database (http://www.eea.europa.eu/

data-and-maps/data/global-land-cover-2000-europe),

which provides land-cover information at 1-km resolution

based on satellite data acquired by the VEGETATION

instrument on board the SPOT 4 satellite, and reflects

conditions ca. 2000. We extracted forest cover from the

South American broad land-cover classification scheme,

which includes forests, shrublands, grasslands, agricultural

lands, barren surfaces, and water, ice, and snow (Eva et al.

2002). Because Tucuman Parrots require forest habitat, we

calculated the proportion of forested pixels within a 5 km

3 5 km window around each grid cell as an index of land-

cover context within the surrounding landscape. We

obtained data on the distribution of protected areas in

the Bolivian and Argentine portions of the study area from

the Bolivian Natural Resource Digital Center (http://

cdrnbolivia.org/index_en.htm) and Lizárraga et al. (2012).

Protected areas are categorized according to the primary

management goals (Ia ¼ strict nature protection; II ¼
National Parks, where protection and education are the

goals; IV¼ areas set aside for particular species or habitat

types; and VI ¼ sites permitting low-level extractive

activities; Dudley 2008, IUCN 2014). We obtained

information on the locations of recent sites of Tucuman

Parrot nestling poaching from Rivera et al. (2010) and

Rojas Llanos (2012).

Modeling Approach
We modeled potential suitable habitat (i.e. sites where the
environmental conditions can or do support parrot

habitat), some of which may not yet be known. We

developed 2 distribution models based on climatic and

forest-cover variables, 1 for nonbreeding season Tucuman

Parrot habitat, and 1 for breeding season habitat using

pino blanco as our proxy for suitable nesting habitat. We

used species distribution models (SDMs) in R 2.1.15 (R

Development Core Team 2014) with package biomod2, a

platform for ensemble species distribution modeling

(Thuiller et al. 2009). Package biomod2 provides several

different SDM modeling algorithms, including Artificial

Neural Networks (ANN), Classification and Regression

Trees (CTA), Flexible Discrimination Analysis (FDA),

Generalized Additive Models (GAM), Generalized Linear

Models (GLM), Generalized Boosted Models (GBM),

Multivariate Adaptive Regression Splines (MARS), Surface

Range Envelope (SRE), Boosted Regression Trees (BRT),

Random Forest (RF) and Maximum Entropy (MaxEnt). For

detailed information on each of the modeling algorithms,

see Phillips et al. (2006) and Thuiller et al. (2009). We used

all 10 available algorithms to generate distribution models,

and then selected the 4 top-performing models to carry

out ensemble modeling. We used the default parameters

defined by biomod2 for all 10 modeling algorithms. The
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modeling algorithms require binary or background data, so

we generated pseudoabsences from within a 100-km buffer

of the study area (VanDerWal et al. 2009, Bateman et al.

2012). For each model run, we conducted 2 model

replicates of separate pseudoabsences, each chosen at

random to obtain the most reliable distribution of model

outputs (Barbet-Massin et al. 2012). For both models we

generated 500 pseudoabsence background points, which

was ~10 times the number of occurrence records

(Mart́ınez-Freiŕıa et al. [2013], as suggested in Thuiller et

al. [2009]). During the calibration process, we gave equal

weighting to presence data and pseudoabsence data (i.e.

prevalence ¼ 0.5).

To provide an unbiased measure of model performance

and obtain standard errors for evaluation metrics (Pearce

and Ferrier 2000), we conducted a 10-fold cross-validation

(Elith et al. 2011, Bateman et al. 2012) with a 90%:10% split

of presence data used for training and testing, respectively.

For each modeling algorithm, we used 10-fold cross-

validation on the 2 pseudoabsence replicates, for a total of

20 replicates each. To ensure that all replicates were

comparable, we rescaled each replicate within biomod2

using a binomial GLM (Thuiller et al. 2009, Mart́ınez-

Freiŕıa et al. 2013). We used Area Under the Curve ROC
(receiver operating characteristic curve; AUC) values of

the test models to evaluate the model performance of all

10 algorithms, and initially considered values above 0.7 to

be indicative of useful models (Elith et al. 2006). We

selected the 4 top-performing models of both breeding and

nonbreeding habitat post hoc, and then calculated their

unweighted average of the predicted distribution (i.e. the

per grid cell average) to generate a consensus model of

current conditions (Araújo and New 2007). In this

approach, uncertainties from individual models contribute

less, and areas of consensus among models contribute

more, to the final product (Araújo and New 2007). AUC

values from the cross-validation (for 2 pseudoabsence

replicates; testing AUC) and training models are shown in

Appendix Table 5.

In order to determine the extent of suitable habitat, it is

necessary to transform the continuous predictions of

habitat suitability from biomod2 into binary maps of

habitat vs. nonhabitat. To do this we used a 2-step process.

First, we optimized for the threshold that maximized the

percentage of presences and absences predicted correctly

in the evaluation data, from the AUC plots (Thuiller 2004,

Liu et al. 2005). Then we inspected the resulting suitable

habitat maps visually, and, finding that they omitted a

small number of known important locations of the

Tucuman Parrot (potentially due to correlation among

temperature variables used in the models), we relaxed the

suitable vs. unsuitable threshold slightly to 0.5. This

resulted in models that better fit the known distribution

of breeding and nonbreeding habitat, and gave us

confidence that the model would identify potential suitable

habitat in areas that had not been surveyed.

To determine the degree of effectiveness of protection of

breeding and nonbreeding habitat for the Tucuman Parrot,

we calculated the areal extent of currently protected areas

within the entire Southern Yungas ecoregion according to

their level of protection as classified by IUCN category

(Dudley 2008). We then estimated the proportions of

suitable Tucuman Parrot nonbreeding and breeding

habitat that occurred within these categories, in total and

by country. To make these estimates we intersected, in

turn, the map of the Southern Yungas ecoregion and the

presence–absence maps of Tucuman Parrot potential

nonbreeding and breeding habitat with maps of 36

protected areas.

We estimated representation targets (i.e. goals for areal

extent of protected areas) for each of 3 habitat categories: the

entire Southern Yungas, Tucuman Parrot nonbreeding

habitat, and Tucuman Parrot breeding habitat. To do this

we followed Rodrigues et al. (2004), who recommended that

targets be determined as a varying proportion of the habitat

to be protected, dependent on its areal extent. We set the

target to 10% if the habitat extent was �250,000 km2 and to

100% if the habitat extent was �1,000 km2. We then

interpolated between these 2 extremes using the equation:

y ¼� 0:1631 lnðxÞ þ 2:1131;

where y is the representation target (proportion) and x is

the areal extent of the habitat category in km2. In order to

understand how vulnerability to poaching is related to

habitat characteristics, we created a 5 km buffer around

each known poaching site and calculated the amount of

forest cover, breeding habitat, and nonbreeding habitat

within the buffer. Poaching site locations are all centered

on forest access points (i.e. villages, roads, or forest edge).
We chose a 5 km distance because we estimated that sites

this close do not present logistical hurdles for potential

poachers to reach on foot.

RESULTS

Ensemble models of both Tucuman Parrot nonbreeding

(AUC ¼ 0.977 6 0.201 SD) and breeding habitat (AUC ¼
0.984 6 0.011 SD) performed well. The FDA, RF, MaxEnt,

and GBM frameworks produced the top-performing

models for both types of habitat (Appendix Table 5).

Predicted suitability of both Tucuman Parrot nonbreeding

and breeding habitat was high where the abundance of

parrots was known to be high (Figure 3), lending further

support to our modeled habitat suitability distributions.

Our models indicated that conditions suitable for

supporting Tucuman Parrot habitat were distributed

across the entire north–south gradient of the Southern
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Yungas, in agreement with field observations of the species

over the past 20 yr (Figure 4). Not surprisingly, the great

majority of Tucuman Parrot potential breeding habitat (i.e.

potential pino blanco habitat, our proxy for breeding

habitat) fell within the boundaries of potential nonbreed-

ing habitat (87% overlap in Argentina, and 98% overlap in

Bolivia). However, less than half of the Southern Yungas

(~46,000 km2; 42%) was predicted to provide suitable

nonbreeding habitat, with slightly more occurring in

Bolivia (~26,000 km2) than in Argentina (~20,000 km2;

Table 1).

Potential breeding habitat was substantially more

limited than nonbreeding habitat (Figure 4); our models

indicated that the environmental conditions that could

support breeding habitat were found in only ~21,000 km2,

or 19%, of the Southern Yungas (Table 1). Further, this

potential breeding habitat was not evenly distributed

between the 2 countries: About 3 times as much breeding

habitat was found in Argentina (~15,400 km2) as in Bolivia

(~5,600 km2). In Bolivia, potential breeding habitat existed

only in very narrow belts and disjunct patches along

ridgetops, whereas in Argentina potential breeding habitat

patches were larger, with a more regular shape.

In Argentina, 23 protected areas overlap the Southern

Yungas, and in Bolivia there are 13 overlapping areas

(Figure 2). In total, ~17% of the Southern Yungas

ecoregion, or 18,142 km2, has legal protection (Table 2).

The extent of protected Southern Yungas in Bolivia is 3

times larger than in Argentina (~14,000 km2 vs. ~4,300
km2). This means that 24% of Bolivia’s, but only 8% of

Argentina’s, Southern Yungas enjoys protected status.

Taking into account the nature of protected status, only

~6% of the ecoregion as a whole is under strict protection,

with an additional 10% protected but permitting some

traditional uses. While Bolivia has no IUCN category Ia

strict nature reserves, 3 Bolivian protected areas are under

relatively strict protection as combinations of National

Parks and habitat or species management areas (categories

II plus IV) or National Parks and sustainable use areas

(categories II plus VI), together encompassing 4,061 km2.

The remainder of Bolivian protected areas (9,741 km2)

allow some traditional resource extraction. In Argentina,

~2,800 km2, or ~6% of the Southern Yungas in that

country, are within protected areas that have strict nature

values as their primary goals (IUCN categories I and II),

while the remaining 3% permit low-level traditional

extractive uses.

Our calculations of habitat conservation representation

targets followed the recommendations of Rodrigues et al.

(2004) and suggested that ~22% of the Southern Yungas

ecoregion, 36% of the nonbreeding habitat, and 49% of the

much more restricted breeding habitat should be in

protected status (Table 1). The shortfall (i.e. the deficit)

in the amount of the Southern Yungas ecoregion that is

protected, relative to its target, is only 6,170 km2, just 25%

below the recommended areal extent in protected status.

The existing protected network contains 11,880 km2 of

nonbreeding habitat, which is also relatively close to

(~71% of) the target of ~17,000 km2. However, the picture

is very different for potential breeding habitat, which totals

only about 21,000 km2 and is much smaller in extent than

the potential nonbreeding habitat and the SouthernYungas

as a whole (Table 1). Because of this smaller area, the

representation target for breeding habitat is larger, at 49%.

FIGURE 3. Maximum number of Tucuman Parrot individuals recorded in the field in the Southern Yungas ecoregion, related to the
suitability of (A) nonbreeding habitat and (B) breeding habitat. Abundance data are from Rivera et al. (2007, 2010). An outlier datum
of 4,147 individuals and habitat suitability value .0.9 for both breeding and nonbreeding habitat is not included on the graphs.
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Yet only 15% (3,134 km2) of the breeding habitat is

currently within protected areas, and only ~6%, all in

Argentina, is strictly protected (Table 2). Thus, the

shortfall of protected breeding habitat across the entire

Southern Yungas is 7,155 km2, or 70% of the habitat

conservation target of 10,288 km2.

We also estimated habitat conservation targets within

each country separately to better match the scale of

FIGURE 4. (A) Habitat suitability map for Tucuman Parrot nonbreeding habitat within the Southern Yungas ecoregion, and (B) areas
of predicted nonbreeding habitat relative to known parrot poaching sites and protected areas. (C) Habitat suitability map for
Tucuman Parrot breeding habitat as represented by the predicted occurrence of pino blanco, the seeds of which are a critical food
for Tucuman Parrot nestlings, and (D) areas of predicted breeding habitat relative to known locations of Tucuman Parrot poaching
sites, known nest sites, and protected area locations.

TABLE 1. The current land area, the target proportion that should have protected status, the amount currently protected, and the
additional extent needed to bridge this gap (shortfall), for the Southern Yungas ecoregion and for nonbreeding and breeding
habitat of the Tucuman Parrot, within the entire Southern Yungas ecoregion and by individual country.

S. Yungas Argentina Bolivia

Southern Yungas ecoregion
Total extent (km2) 110,122 51,683 58,438
Target proportion for protection 0.22 0.34 0.32
Currently protected (km2) 18,142 4,340 13,802
Shortfall (km2) 6,170 13,443 5,136

Tucuman Parrot potential nonbreeding habitat
Total extent (km2) 46,263 20,115 26,148
Target proportion for protection 0.36 0.50 0.46
Currently protected (km2) 11,880 2,721 9,163
Shortfall (km2) 4,873 7,294 2,739

Tucuman Parrot potential breeding habitat
Total extent (km2) 20,938 15,386 5,553
Target proportion for protection 0.49 0.54 0.71
Currently protected (km2) 3,134 1,525 1,611
Shortfall (km2) 7,155 6,808 2,319
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conservation management. Because the areas within each

country are smaller, representation targets are proportion-

ally higher, especially for potential breeding habitat. For

the Southern Yungas, the protection target is 34% in

Argentina and 32% in Bolivia (Table 1). To ensure

protection of adequate breeding habitat, the representation

target in Argentina is 54%, and in Bolivia is 71%, reflecting

the relatively small amount of potential breeding habitat in

Bolivia (~5,553 km2).

There are 6 sites where poaching of the Tucuman Parrot

is known to occur, all of them in Bolivia (Figure 4, Table 3).

Four of these sites occur within designated protected areas

that are in IUCN categories IV and VI. The area within 5

km of each of these sites is 79 km2. The proportion of this

area that was predicted to be in breeding habitat, and that

we thus estimated to be at high risk of poaching activity,

ranged from under 3% (just under 2 km2, at Valle Grande,

a site without protected status) to 70% (53–55 km2 at

Tariquia Flora and Fauna National Reserve and San

Lorenzo, and 53 km2 at a site without protected area

status, Narvaez, located in Tarija Department). We

estimated that, in total, 170 km2 of breeding habitat that

was located within protected areas was at high risk for

illegal parrot capture. Outside protected areas, any nests

occurring within an additional 57 km2 could be highly

vulnerable to poaching.

DISCUSSION

Our goal was to assess the potential effectiveness of

currently protected areas for the conservation of the

Tucuman Parrot in the Southern Yungas. Based on the size

of the ecoregion, the percentage recommended for Tucu-

man Parrot conservation (i.e. its representation target) is

22%, and the actual amount under protection is 16%.

These percentages are reasonably close, so at first glance it

seems that the Southern Yungas and the endemic Tucu-

man Parrot are fairly well represented in protected areas.

However, the question of what constitutes adequate

protection deserves closer scrutiny because critical needs

for sustaining the parrot population, especially for

breeding, require specific habitats that are not available

throughout the ecoregion. Particularly alarming is the fact

that, while the conservation representation target is to

have 49% of potential breeding habitat in protected areas,

just 15% enjoys any level of protection, and ,7% is strictly

protected from uses such as single-tree harvest and cattle

grazing (Table 2). Tree harvest has reduced availability of

nest sites for cavity-nesting birds in the Southern Yungas

(Cornelius et al. 2008, Politi et al. 2010). Thus, the

representation target for breeding habitat certainly has not

been met, and the adequacy of protection of areas classed

below IUCN category II is unclear.

We modeled potential breeding habitat based on

predicted pino blanco distribution, assuming that pino

blanco seeds are essential for Tucuman Parrot reproduc-

tion. However, this metric may result in an overestimate of

breeding habitat because models do not include informa-

tion about pino blanco age structure. This matters because

pino blanco trees don’t bear seeds until they are ~50 yr old
(Blendinger 2006). Further, nest trees (of any species) must

be .40 cm in diameter at breast height to provide suitable

nesting cavities (Rivera 2011). These conditions are

TABLE 2. Areal extents (km2) and percentages (%) of the
Southern Yungas ecoregion, and of Tucuman Parrot nonbreed-
ing and breeding habitats in the entire ecoregion, Argentina,
and Bolivia, that occur within protected areas, according to IUCN
protection categories.

Southern
Yungas Argentina Bolivia

IUCN category km2 % km2 % km2 %

Entire ecoregion
Ia 440 0.4 440 0.9 0 0.0
II 2,392 2.2 2,392 4.6 0 0.0
IIþIV, IIþVI 4,061 3.7 0 0.0 4,061 6.9
IV 3,528 3.2 579 1.1 2,949 5.0
VI 7,721 7.0 930 1.8 6,791 11.6
Total 18,142 16.5 4,340 8.4 13,802 23.6

Nonbreeding habitat
Ia 116 0.3 116 0.6 0 0.0
II 2,056 4.4 2,056 10.2 0 0.0
IIþIV, IIþVI 2,555 5.5 0 0.0 2,554 9.8
IV 2,263 4.9 31 0.2 2,233 8.5
VI 4,889 10.6 517 2.6 4,376 16.7
Total 11,880 25.7 2,721 13.5 9,163 35.0

Breeding habitat
Ia 130 0.6 130 0.8 0 0.0
II 1,034 4.9 1,034 6.7 0 0.0
IIþIV, IIþVI 276 1.3 0 0.0 276 5.0
IV 313 1.5 19 0.1 295 5.3
VI 1,380 6.6 341 2.2 1,040 18.7
Total 3,134 15.0 1,525 9.9 1,611 29.0

TABLE 3. Protection status and potential breeding habitat at risk
of poaching at 6 sites, all in Bolivia, where Tucuman Parrot
nestlings are known to have been removed from nests. Status
denotes whether the site is inside or outside a protected area
and the level of IUCN protection. The area at risk includes
potential breeding habitat within a 5 km radius around each
poaching site.

Site name
Protection

status
Extent of potential

breeding habitat at risk

Narvaez a outside 55 km2

Valle Grande outside 2 km2

Postrervalle inside; IUCN VI 25 km2

San Lorenzo b inside; IUCN VI 55 km2

Potrerillos b inside; IUCN VI 37 km2

Tariquia FFNR c inside; IUCN IV 53 km2

a In Tarija Department.
b In Santa Cruz Department.
c Flora and Fauna National Reserve.
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certainly not met in all areas where pino blanco trees

occur, meaning that the current extent of potential

breeding habitat may be even smaller than we predicted.

Inclusion in CITES Appendix 1 protects pino blanco

trees from international trade, but not from domestic use

(CITES 2015). In Argentina, pino blanco was intensively

logged until the 1990s (Politi et al. 2009), and individual

pino blanco trees are still logged for local uses (Politi et al.

2010). Our analysis was based on forest cover data from

the year 2000, but in the decade ending in 2010, an

estimated 1,730 km2 of Southern Yungas was deforested

(Malizia et al. 2012), a statistic consistent with other recent

estimates of Southern Yungas deforestation (e.g., Monte-

negro et al. 2012, Secretaŕıa de Ambiente y Desarrollo

Sustentable de la Nación 2012). Forest loss has occurred

primarily in the piedmont (L. Rivera and N. Politi personal

observation). In protected areas of IUCN categories IV and

VI, as well as outside protected areas, single tree harvest,

livestock grazing, and forage improvement activities all

take place (L. Rivera and N. Politi personal observation),

contributing to the degradation and loss of Southern

Yungas forest. As forest cover is lost or degraded, the

overall amount of available habitat declines, and the

representation target should increase further. Tracking the
amount of habitat that should be protected creates a

management challenge that can be met through careful

forest monitoring.

When contemplating conservation effectiveness, we also
considered the distribution of breeding habitat between

Argentina and Bolivia. Because 3 times more potential

breeding habitat occurs in Argentina than in Bolivia, it

could be argued that the responsibility for ensuring the

maintenance of an adequate amount of this critical habitat

type is 3 times greater for Argentina than for Bolivia.

Under this logic, approximately three-quarters of the

recommended ~10,000 km2 of protected breeding habitat

should fall within Argentina. Currently, each country

harbors less than 1,600 km2 of protected breeding habitat.

Thus, especially in Argentina, where land conversion is

proceeding rapidly in the northern part of the country

(Montenegro et al. 2012), the amount of protected

breeding habitat needs to be increased by ~5 times to

meet the representation target that maximizes the

likelihood of Tucuman Parrot persistence.

The Southern Yungas ecoregion extends south to the

provinces of Tucumán and Catamarca in Argentina, and

our models suggest that suitable environmental conditions

exist to support breeding and nonbreeding habitat there.

Yet, efforts to locate the Tucuman Parrot in this southern-

most extent, at sites where Wetmore (1926) and others

recorded their presence historically, have been unsuccess-

ful. Forest degradation is likely a strong contributing factor

to the absence of parrots in these areas (Rivera et al. 2007).

We do not reject the possibility that Tucuman Parrots may

persist or use the southern-most Southern Yungas

intermittently during the nonbreeding season. In fact, the

discrepancy between predicted and actual habitat is useful

for planning, as it highlights locations where targeted

management, such as cattle exclusion and a moratorium

on forest harvest (Politi et al. 2010), could be effectively

undertaken to expand the distribution of habitat to its

previously documented extent.

Our ensemble niche model predicted that potential

suitable breeding habitat could occur in the northwestern

part of the Southern Yungas (Cochabamba and Santa Cruz

departments, and Amboró National Park), where, to our

knowledge, no Tucuman Parrot surveys have been

conducted. Pino blanco has been confirmed to grow in

this area (Navarro and Maldonado 2002). This northwest-

ern area should be prioritized for future field investigation,

to determine whether Tucuman Parrot nesting or mature

pino blanco foraging habitat occur there.

Development of suitable nesting conditions takes several

decades, due to the need for both mature pino blanco trees

for foraging and trees large enough to contain nest cavities.

Therefore, we suggest that securing the protection of

known nesting areas against tree harvest merits the highest

priority. Expanding the protection of pino blanco habitat

and ensuring that protection is sufficient to both maintain

mature trees and facilitate the regeneration of young trees

would also be beneficial. Providing incentives for land-
owners to ensure that some pino blanco habitat is

consistently shielded from grazing and burning could

facilitate tree regeneration. Further, governmental regula-

tors should consider halting the local trade of this tree

species.

These protective measures could provide habitat not

only for Tucuman Parrots, but also for a broader group of

species. Pino blanco provides food for other species of

conservation concern, such as the Red-faced Guan

(Penelope dabbenei), and common species such as the

Band-tailed Pigeon (Patagioenas fasciata), Chiguanco

Thrush (Turdus chiguanco), and Molina’s hog-nosed skunk

(Conepatus chinga; Fra et al. 2007). Pino blanco forests

also are habitat for additional species with restricted

ranges, including the Yellow-striped Brushfinch (Atlapetes

citrinellus), White-browed Tapaculo (Scytalopus super-

ciliaris), Slaty Elaenia (Elaenia strepera), Blue-capped

Puffleg (Eriocnemis glaucopoides), and Rothschild’s Swift

(Cypseloides rothschildi; BirdLife International 2013).

Considering resource needs during each stage of the

annual cycle may be necessary for the successful

conservation not only of migratory species (Hostetler et

al. 2015), but of resident species as well. For example, the

endangered Hawaiian Goose (Branta sandvicensis) uses

very different habitat types during the breeding and

nonbreeding seasons (Leopold and Hess 2013), and

explicit consideration of nesting, summer, and winter
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habitat is critical for habitat prioritization efforts for

Greater Sage-Grouse (Centrocercus urophasianus), a

species of conservation concern (Fedy et al. 2014).

Nestlings of several species of conservation concern

depend on specialized foods, including the critically

endangered Ridgway’s Hawk (Buteo ridgwayi), for which

the nestling diet is primarily reptiles (Woolaver et al. 2013).

The Blakiston’s Fish-Owl (Bubo blakistoni) requires a

combination of specialized nest sites and specialized diet

for population persistence (Slaght et al. 2013), as do many

Psittacidae in addition to the Tucuman Parrot. For

example, the Scarlet Macaw (Ara macao; Renton 2006),

Lilac-crowned Parrot (Amazona finschi; Renton and

Salinas-Melgoza 1999), Red-crowned Parrot (Amazona

viridigenalis; Enkerlin-Hoeflich and Hogan 1997), and

Hyacinth Macaw (Anodorhynchus hyacinthinus; Birdlife

International 2014) all have specialized nestling diets in

addition to requiring cavities for nesting. Intrinsic habitat

elements such as large cavity-bearing trees or food-bearing

species are not typically mapped at the ecoregion scale, but

can be maintained through directed management (Beaudry

et al. 2010).

The largest protected areas, and the most inaccessible

areas of Southern Yungas forest, are found in Bolivia.

While in many large protected areas inaccessibility confers

protection (Joppa et al. 2008), enforcement is also more

challenging, and in the Southern Yungas these inaccessible

areas are where Tucuman Parrot nest poaching occurs

(Rivera et al. 2010, Rojas Llanos 2012). Capturing parrots

has been illegal in Bolivia since 1999 (Herrera and

Hennessey 2007), and, while poaching outside protected

areas is a disturbing problem, poaching of Tucuman

Parrots within protected areas gravely undermines the

contribution of these protected areas to ensuring popula-

tion persistence. Tucuman Parrots typically make one
nesting effort per year (Rivera 2011). The proportion of the

nesting population at a given site that is affected by

poaching is unknown, but in other Amazona species up to

70% of nesting attempts have failed due to poaching

(Wright et al. 2001), and the absence of at least 2 parrot

species from substantial areas of suitable habitat in Mexico

has been attributed to poaching (Marin-Togo et al. 2012).

The attractiveness of Amazona parrots (Figure 5) is

associated with high poaching pressure relative to less

attractive genera (Tella and Hiraldo 2014). Anecdotal

evidence of Tucuman Parrots kept as pets in villages in the

vicinity of our 6 mapped known poaching sites (J. Tella

personal communication) suggests that local customs and

attitudes toward parrots are a challenge to the conserva-

tion of this species, as well as others in Bolivia (e.g., the

Red-fronted Macaw [Ara rubrogenys]; Tella et al. 2013).

The proximity of nest sites to areas of human activity,

coupled with inadequate enforcement, are associated with

high rates of nest poaching of the Scarlet Macaw in Belize

(Britt et al. 2014), and we suspect that unprotected

Tucuman Parrot nests also experience high poaching rates

in the vicinity of human activity. Strengthening the

enforcement of existing laws by strategically applying

greater effort toward detecting and halting illegal take in

the vicinity of known poaching sites could increase the

adequacy of protected areas in Bolivia. Educational efforts

aimed at increasing pride in wild parrots and other

charismatic wildlife, while discouraging their use as pets,

is a strategy that has met with success locally in Argentina

and Bolivia (http://www.cebio.org.ar/), and is a conserva-

tion strategy that could more broadly contribute to

maintaining Tucuman Parrot population viability.

In summary, in Argentina, the most effective way to

ensure Tucuman Parrot population persistence is to

strategically add to the protected area, prioritizing: (1)

areas of the Southern Yungas containing mature pino

blanco, and (2) areas where pino blanco in earlier age

classes can be protected to maturity. In Bolivia, where our

models suggest potential nesting habitat is far less

FIGURE 5. The Tucuman Parrot is vulnerable to poaching for the
pet trade.
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abundant, the challenge is to discourage poaching, through

both education and enforcement of existing laws.

Our study highlights the fact that, for some species,

effective conservation may require the presence and active

management of one or more specific habitat elements or

conditions, such as age-class structure. Representation

targets for habitat conservation that are based solely on

area may be inadequate for securing the population

persistence of these species if important biological

information is overlooked.
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Rodrigues, A. S. L., H. R. Akçakaya, S. J. Andelman, M. I. Bakarr, L.
Boitani, T. M. Brooks, J. S. Chanson, L. D. C. Fishpool, G. A. B.
Da Fonseca, K. J. Gaston, M. Hoffmann, et al. (2004). Global
gap analysis: Priority regions for expanding the global
protected-area network. BioScience 54:1092–1100.

Rojas Llanos, R. (2012). Análisis de las caracterı́sticas y los
cambios en el comercio de Psittácidos de Bolivia en los
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APPENDIX TABLE 4. The set of 8 bioclimatic variables used in models of potential suitable Tucuman Parrot habitat, and their
Pearson’s correlation coefficients. The bioclimatic variables represent annual trends (e.g., annual mean temperature, annual
precipitation), seasonality (e.g., variation in temperature and precipitation), and extreme or potentially limiting environmental factors
(e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of 3 mo.
Data were obtained from the WorldClim database (http://www.worldclim.org/bioclim). BIO1 ¼ annual mean temperature; BIO4 ¼
temperature seasonality (standard deviation * 100); BIO5¼maximum temperature of warmest month; BIO6¼minimum temperature
of coldest month; BIO12 ¼ annual precipitation; BIO15 ¼ precipitation seasonality (coefficient of variation); BIO16 ¼ precipitation of
wettest quarter; and BIO17 ¼ precipitation of driest quarter.

BIO1 BIO12 BIO15 BIO16 BIO17 BIO4 BIO5 BIO6

BIO1 1.0000 �0.3641 0.4574 0.0469 �0.5657 0.4502 0.8110 �0.0844
BIO12 �0.3641 1.0000 �0.7864 0.5753 0.8514 �0.7613 �0.7190 0.7880
BIO15 0.4574 �0.7864 1.0000 0.0469 �0.9693 0.9902 0.8842 �0.8834
BIO16 0.0469 0.5753 0.0469 1.0000 0.1005 0.0816 0.0211 0.1363
BIO17 �0.5657 0.8514 �0.9693 0.1005 1.0000 �0.9642 �0.9350 0.8638
BIO4 0.4503 �0.7613 0.9902 0.0816 �0.9642 1.0000 0.8832 �0.8840
BIO5 0.8110 �0.7190 0.8842 0.0211 �0.9350 0.8832 1.0000 �0.6399
BIO6 �0.0844 0.7880 �0.8834 0.1363 0.8638 �0.8840 �0.6399 1.0000

APPENDIX TABLE 5. Area under the ROC curve (AUC) scores for models of the distribution of Tucuman Parrot nonbreeding habitat
and breeding habitat, as indicated by the predicted distribution of pino blanco (Podocarpus parlatorei). The top 4 models within
each set are shown in bold font. Ensemble (unweighted average of the top 4 models) nonbreeding habitat AUC score ¼ 0.953 6
0.040 SD. Ensemble breeding habitat AUC score¼ 0.964 6 0.030. The training AUC is the average (6 SD) of the training-only model
across the 2 pseudoabsence replicates. The testing AUC score is the average (6 SD) across the 20 replicates used in cross-validation
testing models. ANN¼ Artificial Neural Networks, CTA¼ Classification and Regression Trees, FDA¼ Flexible Discrimination Analysis,
GAM ¼ Generalized Additive Models, GBM ¼ Generalized Boosted Models, GLM¼ Generalized Linear Models, MARS ¼Multivariate
Adaptive Regression Splines, MaxEnt ¼Maximum Entropy, RF ¼ Random Forest, and SRE ¼ Surface Range Envelope.

Model Training model AUC score SD Testing model AUC score SD

Nonbreeding habitat
MaxEnt 0.894 0.059 0.932 0.001
GBM 0.875 0.058 0.963 0.000
RF 0.870 0.093 1.000 0.000
FDA 0.869 0.080 0.917 0.011
GLM 0.842 0.100 0.927 0.005
GAM 0.778 0.182 0.932 NA a

MARS 0.762 0.128 0.831 0.022
ANN 0.735 0.135 0.714 0.227
CTA 0.734 0.109 0.827 NA a

SRE 0.702 0.111 0.758 0.008
Breeding habitat

GBM 0.912 0.066 0.977 0.003
MaxEnt 0.907 0.071 0.945 0.005
RF 0.901 0.082 1.000 0.000
FDA 0.898 0.080 0.932 0.010
GLM 0.882 0.070 0.933 0.005
CTA 0.874 0.045 0.888 0.007
MARS 0.842 0.079 0.888 0.021
SRE 0.788 0.110 0.820 0.008
ANN 0.774 0.123 0.934 0.016
GAM 0.688 0.150 0.941 NA a

a NA values indicate that 1 of the training model replicates failed to complete, and only 1 AUC score is available.
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